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1 Introduction

MIDI is a standard for communicating and representing musical events to a hardware or software device [1], [2].
The midi file contains a list of note-on and note-off and numerous controller commands that allow a device to
synthesize the music encoded. These commands specify pitch, loudness and duration of each note. Frequently the
notes are quantized into musical intervals, permitting the midi file to be converted into a symbolic representation
such as sheet music. Each of the notes refers to a specific MIDI channel which is mapped to a particular musical
instrument. The MIDI standard allows for 16 MIDI channels, and specifies 128 musical instruments.

There are large collections of midi files that are freely available on the internet. For example, Colin Raffel has
placed a large collection of 176,581 midi files [3] gathered from numerous sources. Many of these files were gathered
for the purpose of matching them to the Million Song Dataset[4] and [5]. This paper deals with a subset of of this
collection, called ‘Clean MIDI subset’. The subset contains more than 17,200 midi files organized by the artist.
The collection was used to study the application of various statistical and data exploration techniques.

This subset contains a wide selection of popular music grouped among 2197 artists. These artists include well
known groups such ABBA, The Beatles, The Rolling Stones as well as many lesser known. The music genres range
from different varieties of rock, pop, new wave, hip hop, punk, rap, jazz and classical. The music titles are well
known and a lot of supplementary information is available from other sources such as Wikipedia.

Popular music can be classified into hundreds of music genres [6] and [7]. Though there has been considerable
research in developing automatic methods for classifying music, for example [8] and [9], their accuracies are limited.
Many of the terms used to describe music such as ‘Alternative rock’ cover diverse styles such as punk rock and new
wave. Artist frequently fuse various styles.

Though most of the work on digital music collections deal with audio representations, there are are few studies
dealing with symbolic representations such as MIDI files. Several packages such as jJMIR [8], Humdrum [10], and
music21 [11] for analyzing this data are available.

In order to explore this large collection, I created a computer program called Midiexplorer that is available on
SourceForge.net [12]. The program was developed to browse the collection, extract various characteristics of the
individual files, and search for files that match certain criteria. The contents of a midi file can be viewed in various
graphical forms. The program can export various midi file descriptors for further statistical analysis using other
packages. A description of this software can be found on the internet [13].

The paper leans towards the application of various statistical analysis techniques for the analysis of such a
collection of data. All of these methods are available in the R statistical packages [14] and require only Many
of these programs only a few seconds to process this data on a desktop computer. This is an ideal environment
for exploring this data and becoming familiar with the many analysis techniques. Since this paper covers many
different analysis schemes, it is not practical to give a detailed description of these techniques; however, numerous
references are provided. Furthermore, the reader can find many tutorial videos on YouTube.

In many cases, the goal of the analysis was to to separate the collection into distinct groups using the R software.
Unfortunately, is not easy to determine whether these groups correspond to musical classes.

The next section describes a method for grouping the midi files on the basis of the musical instruments (MIDI
programs) assigned to the different tracks. This is followed by the next section where we attempt to group the midi
files on the basis of their pitch class distributions. In the last section some of the characteristics of the percussion
tracks are investigated.



2 MIDI Programs

The General MIDI Standard defines 128 programs or musical instruments. These instruments provide the tone
colour to the music and give it a certain style. For example, the piano, bass and saxaphone are frequently associated
with jazz music. Similarly, the overdriven and distortion guitar are associated with heavy metal. Such tendencies
have been exploited for identifying the music genre [15].

Other important features such as tempo, rhythm, and percussion also important in characterizing the music
style. Here, we will focus exclusively on the MIDI programs in order to establish their value.

It is not sufficient to determine the absence or presence of these programs in the MIDI file. For example, the
flute may occur in just the introduction of the piece. For this reason, the amount of activity in each of the 128
MIDI programs was determined and represented by a program vector.

To compute the activity for a program, we summed the duration of all the notes associated with that program
and then divided this sum by the total duration of the midi file. Thus if a single note plays for half the duration
of the file, it contributes an activity of 0.5. Chords containing two notes contribute double the amount. The
variability of the program vectors were reduced by normalizing them to unit length. This implies that how the
activity is distributed among the 128 programs is considered more important rather than the total activity.

More specifically, assume the midi file consists of N notes whose durations are dur(i) and whose program
assignments are prg(i). Let §(j, k) be the delta function which is 1 when j = k and 0 otherwise. Then the activity
for class k is given by

N
activity(k) = % Z dur(i) * 6(prg(i), k) (1)

where D is the duration of the entire midi file. The program vector consists of the 128 activity values which were
normalized so that the vector has unit length. Program vectors were computed for each of the midi files and stored
in a database.

The set of all of these vectors can be viewed as a cloud of points in a high dimensional space; however, we
can gather their characteristics from statistical analysis. Segmenting this data into various groups having common
properties makes it easier to deal with this information.

It is likely that the program vectors can fit into a lower dimensional subspace. For example, many programs
such as ‘Gun Shot’ rarely occur and other programs tend to occur together. The principal components is a linear
transform that decorrelates these components and concentrates the information into a lower dimensional space [16].
The principal components is an orthonormal set of vectors that maximize the variances of the data. The R function
prcomp() was used to determine this transformation.

As seen in Figure 1, most of the variation is concentrated in the first few components. The MIDI programs
contributing the most information were mainly the keyboard, electric guitar, the acoustic guitar, and the string
ensemble — Figure 77.
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Figure 1: Variances of the principal components of program vectors.
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Figure 2: First six principal vectors of program vectors. The horizontal axis indicates the MIDI program number
and the vertical scale is the weighting factor of the MIDI program for the particular principal component. The
Acoustic Grand, Acoustic Guitar, Overdriven Guitar, Acoustic Bass, Electric Bass (finger), and Fretless Bass MIDI
programs are weighted the most in the main principal components.
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One can get a glimpse of how the 17200 program vectors are distributed by projecting them onto the principal
components. The program vectors were transformed into the coordinates of the first few principal components and

plotted in Figure 3.
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Figure 3: Program vectors projected onto the first 4 principal component.

It is apparent that there are regions of high and low concentration. Though the clusters do not appear distinct,
they may be separated in higher dimensions. DBSCAN (Density-based spatial cluster of applications with noise)
[17] and [18] is a clustering algorithm that finds regions of high density surrounded by low density regions.

The dbscan function requires the user to specify two parameters — the size of a neighbourhood eps, and the
minimum size of a cluster minPts. (Methods on choosing these parameters are suggested in the documentation.)
Given eps, these algorithms count the the number of nearest neighbours around each data vector. If the number
of neighbours exceeds minPts, the data vector is classified as a core point. A point p is directly density-reachable
from a core point q if p is in the eps neighbourhood of q. A point p is density-reachable from point q with respect to
eps and minPts if there is a chain of points directly reachable from p [19]. All the remaining points are considered
as noise points. Dbscan labels all the given data points and identifying clusters.

The OPTICS [20] algorithm, an extension of dbscan, was used in this study. It can reveal cluster structure in
regions where are local variations in the densities. Instead of specifying the eps parameter, the user specifies the
maximum expected eps for computational efficiency.

Figure 4 shows all the core points and points reachable from the core points. Due to the sparsity of the data in the
high dimensionable space more than 90 percent of the program vectors were classed as noise points. The selected
points appear to match the samples in high density regions seen in Figure 3. The function extractDBSCAN()
grouped the results into 20 or so clusters. 8 of these clusters were color coded and shown in Figure 5.
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Figure 4: Clustered data returned by OPTICS and extractDBSCAN in the dbscan r package with an
0.75, minPts = 12 and eps .l = 0.30.
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Figure 5: Clustered results for 8 of the clusters (distinguished by color) returned by OPTICS and extractDBSCAN
in the dbscan r package with an eps = 0.75, minPts = 12 and eps.l = 0.30.

The OPTICS/extract DBSCAN algorithms failed to classify 90 percent of the data points. As the dimensionality
of the data increases, the interspacing between the data points tends to become large but more or less the same
dimensionality [21] and [22]. The paper [23] is a particular lucid description of how this effects clustering algorithms.
As a result of this tendency, it becomes difficult to chose an eps value that is large enough to group most of the
data samples but not too large too clump all the samples into one cluster.

Though the OPTICS/extractDBSCAN results show the general structure of the program vector distribution,
these results were not particular useful. The points in the clusters mapping to the individual MIDI files did not
reveal any particular pattern. The samples in some of the clusters (for example, cluster 13 in Figure 5) covered a
large region in program space preventing the identification of any coherent pattern. Furthermore, it was preferable
to be able to group all of the MIDI files rather than a select few. Therefore, it was decided to try a partitioning
cluster scheme.

The k-means algorithm introduced by Lloyd in 1957 [24] is the most well-known method for partitioning data.
Like many other clustering techniques, it partitions the data into groups that do not necessarily reflect the regions
of high concentration in the distribution. The algorithm tries to minimize the withen cluster dispersion using an
iterative algorithm.

The k-means returns cluster centroids that are the average of the cluster sample positions in the data space.
In some cases, these centroids may occur in sparse regions far from any particular data sample. It would be
advantageous if the cluster centers were actual data samples. Fortunately, the k-medoids algorithm introduced by
Kaufman and Rousseeuw [25] does this exactly. It has been demonstrated that the k-medoids algorithm is less
sensitive to noisy data and outliers [26]. The k-medoids algorithm is implemented by the pam() function in the R



‘Cluster Package’.

There are two remaining issues. First, most cluster partitioning algorithms including the k-medoid require the
user to specify the number of clusters. Secondly, the computation time to cluster the 17,200 midi files was excessive.

The determination of the number clusters in a data set is a big topic and there are numerous algorithms and
publications on this subject [27], [28] and [29]. Many of the papers compare the accuracy of these algorithms using
computer generated data [30] and [31].

There are many tutorials on this topic. The STHDA site [32] supported by A. Kassambara, posts numerous
introductory articles on cluster analysis. The class notes for the Stat133 course at Berkeley University of California
posted by Phil Spector is also noteable [33]. In addition, there is also the set of slides for the data mining summer
course given at University of Michigan by Ala Al-Fugaha [34]. There are also numerous YouTube videos. The R
‘cluster package’ comes with 70 pages of documentation [35] containing a lot of useful information.

I had attempted to apply several methods for estimating the number of clusters in the data. Most of the
methods validated less than a handful of clusters which was not adequate for this study. At the very end, I decided
to partition the data into 30 groups — mainly because it was barely manageable for this study.

The computation time for the k-medoids algorithm was a second issue. Unfortunately, the k-medoids algorithm
requires large memory resources resources and runs fairly slow. The processing time is proportional to k(N — k)?
where k is the number of clusters to be extracted and N is the number of data vectors.

Kaufman and Rousseeuw also introduced an alternative approach called clara (Clustering for Large Applications)
It can cope with large amounts of data [25] and runs very fast on a desktop computer. The scheme reapplies the
k-medoids algorithm on numerous subsets of the data and returns the best results. Unlike the k-medoid algorithm,
it does not find the optimum configuration; however, the results were adequate for this study.

The data was partitioned into 30 groups using the clara algorithm in the ‘cluster package’.

In addition to mapping the data vectors to the cluster numbers, both the pam (k-medoids) and the clara
algorithm return various measures of the cluster quality which are listed in Table 1. size indicates the number
of data samples that were assigned to the cluster. max_dis specifies the maximum distance of the data samples
assigned to the specific cluster to its medoid. avg_dis is the average distance of the data samples assigned to the
specific cluster to its medoid. ratio is the ratio of maz_dis over the minimum distance of all the data samples not
assigned to that specific cluster to the cluster medoid. If ratio is small the cluster is well-separated from the other
clusters. The most common MIDI programs associated with the cluster is also given.



cluster | programs size | max_dis | avg._dis | ratio
1 Dst Guitar, Elec Bass, 783 1.21 0.84 1.86
2 Act Guitar, Act Bass, ... 467 | 1.28 0.88 1.48
3 String Ens, Wind ... 917 | 1.39 0.85 1.42
4 Elec Guitar, Elec Bass, ... 672 1.37 0.85 1.41
5 Act Grand 1537 | 1.37 0.43 1.58
6 Act Guitar, Elec Guitar, ... 853 1.24 0.82 1.39
7 Synth Bass ... 382 | 1.36 1.01 1.43
8 Synth Bass, Lead, Choir, ... 354 1.40 1.07 1.09
9 Brass and Wind, 75 1.36 1.10 1.14
10 Elec Bass, Elec Guitar, Pad ... 333 1.26 0.88 1.12
11 String Ens, ... 729 | 141 0.86 1.53
12 Ovr Guitar, Elec Bass ... 996 | 1.34 0.79 1.46
13 Dst Guitar, Elec Bass, ... 574 | 1.37 0.77 2.27
14 Fretless Bass, ... 1109 | 1.41 0.92 1.79
15 Act Grand and Act Bass, 1082 | 1.37 0.82 1.49
16 Act Grand, Act Bass, Sax, ... 238 1.38 0.76 1.18
17 Dst Guitar, Elec Bass, Choir, ... | 275 1.18 0.58 1.96
18 Elec Piano, Elec Bass, ... 400 1.41 0.92 1.43
19 Act Guitar 862 | 1.40 0.77 1.43
20 Fretless Bass, String Ens, ... 630 1.41 0.81 1.63
21 Elec Guitar, Bright Act, ... 360 1.37 0.86 1.42
22 Act Guitar 355 | 1.31 0.81 1.41
23 Act Guitar, Elec Guitar, ... 417 | 1.27 0.89 1.47
24 Dst Guitar, Fretless Bass, ... 298 | 1.39 0.79 1.76
25 Elec Piano, Fretless Bass, ... 550 1.40 0.91 1.51
26 Bright Act, Electric Bass, ... 398 1.32 0.88 1.36
27 Act Grand, Fretless Bass, ... 755 | 1.38 0.86 1.35
28 Elec Grand, Elec Bass ... 236 1.22 0.82 1.10
29 Elec Guitar, Dst Guitar, Sax, ... | 329 | 1.33 0.84 1.80
30 Clav, Dst Guitar, Voice, ... 133 1.38 1.11 1.15

Table 1: 30 program clusters, their significant programs, number of samples assigned to the clusters, and other
cluster descriptors. The following abbreviations are used here: Elec - Electric, Act - Acoustic, Ens - Ensemble, Dst
- Distortion, Ovr - Overdriven.

Clusters varied in size from a 1000 to less than a 100. The data in the large clusters were generally similar,
while the smaller clusters were more mixed and spread out over a larger region in the program activity space. The
cluster ratio values all exceeded 1.0, indicating that the clusters were not well separated.

The medoids of the 30 cluster model were transformed to the principal components and plotted in Figure 6 so
that we could visualize the positions of the medoids.
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Figure 6: Projection of the program clusters onto the first 4 principal components.

The clusters tend to separate the midi files into music with similar styles. For example, Cluster 1 with the
Distortion Guitar and Electric Bass has hard rock, grunge, heavy metal type of music. Cluster 3 which has String
Ensembles and possibly wind or brass instruments tend to attract music from the baroque and classical era. Cluster
4 which is heavy on the guitars seems associated with folk and country music. Table 2 lists the midi files centered
around program clusters 15 and 16. The midi file which heads the group is the medoid of that cluster. The r
value measures the discrepancy of the other midi files in the group. r Values close to zero are good matches. The
particular assemblage of musical instruments in these clusters lead to many jazz compositions. Genre assignment
were obtained from Wikipedia by searching the title and artist.

Table 3 illustrates a different style.

3 Tonality Analysis

Jazz and Blues music have their own particular scales [36]. The nature of the music is determined by whether it
is played in a major, minor, pentatonic, chromatic scale. Counting all the naturals flats and sharps, the Western
music scale consists of 11 pitch classes. Most music uses a subset of eight of these pitch classes forming an octave
and the particular selection determines whether the music is in a major, minor or other scale. Western music in
particular popular music has a tonal center which defines the key of the piece.

The pitch class vector was determined by measuring the activity in each of the pitch classes. Here activity is
measured by the amount of time the pitch is played relative to the total length of the midi file. This was done in

10



T file genre
15 Oscar Peterson/Emily.1.mid Jazz
Acoustic Grand and Acoustic Bass 1082
0.000 | Bee Gees/Israel.mid Pop
0.000 | Elvis Presley/Heartbreak Hotel.mid Blues
0.000 | Porter Cole/I Concentrate on You.mid
0.000 | Porter Cole/You'd Be So Nice to Come Home To.mid Jazz
0.000 | Tyner Mccoy/You’d Be So Nice to Come Home To.mid | Jazz
0.002 | Oscar Peterson/I Want to Be Happy.mid Jazz
0.003 | Evans Bill/Israel.mid Jazz
0.004 | Gershwin/A Foggy Day.mid Jazz
0.005 | Queen/My Melancholy Blues.mid Progressive rock
0.008 | Powell Bud/I Get a Kick Out of You.mid Jazz
0.012 | Mariah Carey/Can’t Let Go.l.mid Rhythm and Blues
0.016 | Billy Joel/Root Beer Rag.mid Ragtime
16 Basie/Have a Nice Day.mid Jazz
Acoustic Grand, Acoustic Bass, Alto Sax, and Brass 238
0.000 | 2 the Core/Have a Nice Day.mid Jazz
0.013 | Basie/Ya Gotta Try.mid Jazz
0.014 | Ellington/Satin Doll.1.mid Jazz standard
0.014 | Rich , Buddy/Groovin’ Hard.mid Jazz
0.017 | Sammy Nestico/Pressure Cooker.mid Jazz
0.019 | Miller/In the Mood.1.mid Big band
0.020 | Parker Charlie/Scrapple from the Apple.mid Jazz
0.021 | Herman/’Round Midnight.mid Bebop
0.023 | Gillespie Dizzy/Salt Peanuts.mid Jazz
0.025 | Basie/Doin’ Basie’s Thing.mid
0.026 | Parker Charlie/Ornithology.mid Bebop
0.029 | Basie/Basie - Straight Ahead.mid Big band

Table 2: Midi files associated with program clusters 15 and 16. The medoid file name is given in the first line with
it probable genre. The next line lists the main programs which distinguish this cluster. The following lines list the

r value (discrepancy) and midi file names of the best matches to the medoid.

r file genre

24 Def Leppard /Photograph.1.mid Hard rock
Distortion Guitar, Fretless Bass, others 298

0.000 | Def Leppard/Photograph.mid Hard rock

0.009 | Gary Moore/Walking by Myself.1.mid Hard rock

0.018 | Def Leppard/Armageddon It.2.mid Hard rock

0.032 | Def Leppard/Heaven Is.mid Glam metal

0.035 | Nirvana/Son of a Gun.l.mid Grunge

0.036 | Jimi Hendrix/Foxy Lady.2.mid Psychedelic rock

0.052 | Iron Maiden/Holy Smoke.mid Heavy metal music

0.056 | Def Leppard/All T Want Is Everything.mid | Hard rock

0.057 | Queen/Son and Daughter.1.mid Hard rock

0.071 | Green Day/When I Come Around.1l.mid

0.073 | The Cult/Wild Flower.mid

Table 3: Midi files associated with program cluster 24.
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the same way the program vector was determined. The pitch class vector was normalized so that the total squared
activity is one. For example, Figure 7 is a graphic representation of the pitch class vector for The Beatles song ‘A
Hard Day’s Night’. The amount of activity in each of the pitch classes is indicated by the height of the black bar.
F+ is the only non natural note implying that the music is probably in the key of G major. Since G is the most
active note, it is likely to be the tonal center providing further justification to assuming the music is played in G
major.

C C# D D# E F F# G G# A A# B

Figure 7: Pitch class vector for The Beatles song, ‘A Hard Day’s Night’.

The pitch class vectors can be quite varied. George Gershwin’s ‘Rhapsody in Blue’ in Figure 8 appears to use
a chromatic scale but in fact it still uses the diatonic scale. The music moves around different keys so much that
it uses all the chromatic keys.

C C# D D# E F F# G G# A A# B

Figure 8: George Gershwin ‘Rhapsody in Blue’.

In contrast, Darude’s ‘Sandstorm’, seems to be limited to three pitch classes.

c C# D D# E F F# G G# A A# B

Figure 9: Pitch class distribution for Darude’s Sandstorm.

A serious issue with this method is that the pitch class vector does not reflect the melody line which typically
has more structure and detail. For example, Figure 10 was created using only the melody lines. Unfortunately
there is no reliable automatic method for determining the MIDI tracks containing the melody lines [37] and [38].

Figure 10: Pitch class distribution computed from the melody lines in Darude’s Sandstorm.

The 17,200 pitch class vectors were partitioned into 30 groups using the clara algorithm. Except for cluster
number 12 which tends to focus on country music and the blues, I did not detect any pattern in this partition
based on pitch class information.
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4 Analysis of Percussion Data

The MIDI standard assigns channel 9 exclusively to percussion instruments. For this channel, the pitch byte is not
used to indicate the pitch of a musical note but instead specifies one of 47 percussion instruments. Nearly every
midi file in the collection contains a percussion line which gives the music the appropriate ambiance.

As seen in Figure 11 a midi file can uses between zero and 35 percussion instruments. Certain percussion
instruments such as the hi-hats are almost always present as seen in Figure 12

Number of midi files
400 600 800 1000 1200 1400
| | | |
]

200
|

o HH |_||_||_||—u—|m.—_H

1 3 5 7 9 11 14 17 20 23 26 29 32 35

Number of percussion instruments

Figure 11: Histogram of the number of percussion instruments in a midi file.
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Figure 12: Histogram of the number of midi files which reference a particular percussion instrument is shown here.

In the case where five or more percussion instruments are playing simultaneously, it is unlikely that the listener
is aware of all of the active instruments. Many of the instruments do not contribute to the overall beat and can
be considered decorative rather than essential. It is likely that the midi files using 5 or few percussion instruments
would concentrate on the essential percussion instruments. If we limit the analysis to those midi files that use five or
fewer percussion instruments, we can compute a similar histogram as shown in 12. This collection represents about
20 percent of the entire midi file database. The fraction of the histogram counts for the limited midi file collection
over the histogram counts for the entire collection would be indicative of the preference for certain percussion
instruments in the limited set. This is plotted in 13. The set of midi files with five or fewer percussion instruments
seem to avoid the Tom drums in favour for the bass drums, snare, and hi-hat cymbals.
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Figure 13: The ratio of the number of midi files which reference a particular percussion instrument in the set of
midi files that contain 5 or fewer percussion instruments over the number of midi files for the entire database is
plotted.

The nonnegative matrix factorization (nmf) [39] provides a formal method for extracting the natural grouping
of the percussion instruments. This is one of several schemes for applying matrix decomposition to data mining
[40]. nmf requires that all the components of the input vectors are never negative. It represents the data with a
compact set of basis vectors.

The R statistical environment has two packages for computing the NMF. Package NMF [41] contains a large
toolkit for computing the NMF using an assortment of algorithms as well as numerous functions for evaluating
the resulting models. This package comes with 191 pages of documentation. Package NNLM [42] implements an
efficent algorithm for the nmf which is suitable for large databases.

Let X represent the m by n data matrix where each of the m rows of the matrix represents a different attribute
of the n objects. This is the transpose of the usual representation where the objects are aligned along the rows.
The nmf computes the approximation

X~WH (2)

where we need to determine the positive valued matrices W and H. W is a matrix with m rows and r columns
and H is a matrix with r» rows and n columns where r is chosen to be less than n and m. W contains the basis
vectors (factors) and H (mixing matrix) contains the coefficients to the basis vectors in the transformation for the
different data vectors.
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Unlike other matrix decomposition techniques such as the principle components and the singular value decom-
position, the nonnegative matrix factorization does not return a unique solution. Different decompositions are
obtained depending upon the chosen r size, the algorithm used, and the initial starting values.

In this study, a percussion vector listing the number of noteon commands for each of the 47 percussion instru-
ments was determined for a particular midi file. The percussion vectors were normalized to a unit squared length.
Percussion vectors were determined for each of the midi files and assembled into an input matrix X by appending
all the percussion vectors as column vectors. The nmf decomposition with an r equal to 15 was applied to this
matrix and the resulting basis vectors are shown in Table 4. Looking at the basis vectors consisting of the 15
columns in this table it is apparent that these basis vectors group similar types of percussion instruments.

The percussion accompaniment is open to deeper analysis. Generally, the percussion accompaniment consists
of several loops of repeating patterns, where a pattern may extend over several beats. The onset times of the
percussion notes are quantized to units of a 1/16 note. This is easily verified from the histogram of the onset times
— for example Figures 14 and 15. The duration of a midi percussion note is meaningless, since the midi percussion
hit always has a fixed decay.

Ignoring the loudness of the note, we can represent the sequence of notes of a particular percussion instrument
as a binary time series of 1/16 notes. A value of one represents the hit of the percussion instrument at a particular
time. Most of the other values in the series are zero, when the instrument is inactive. It is possible for two or more
different percussion instruments to be hit at the same time. Therefore we represent the state of all the 47 midi
percussion instruments at a particular instant by a binary vector of dimension 47. The percussion track is now
represented by a time series of n binary vectors where n is the number of 1/16th notes in the entire midi file.

The series of binary vectors are best handled when they are represented by long integers. The binary operations
such as ’exclusive or’ and bit counting allow us to analyze these sequences efficiently. It is not too difficult to
identify the various repeating patterns in the percussion track.

0.6 — probability versus note onset time (beat units)

0.4 —

0.3 —

0.2 —

0.1 —

0.00 0.20 0.40 0.60 0.80 1.00

Figure 14: Probability of the percussion note onset versus time inside a beat. In this example all the percussion
onsets are quantized to quarter beat units.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Acoustic Bass Drum | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 16.3 | 0.0 0.0
Bass Drum 1 0.0 0.0 0.0 0.0 16.3 | 0.0 0.0 0.0 | 0.00.0 0.0 | 0.0 0.0 0.0 0.0
Side Stick 0.0 17.2 1 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.00.0 0.0 | 0.0 0.0 0.0 0.0
Acoustic Snare 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 16.1 | 0.0 0.0 0.0 0.0
Hand Clap 0.5 0.5 0.5 1.6 04 | 0.1 0.0 0.0 | 0.0]0.1 0.5 0.1 0.3 0.4 | 0.0
Electric Snare 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0 155 1]00 |0.0 0.0 0.0 0.0
Low Floor Tom 0.0 0.1 0.0 0.0 0.4 | 0.0 0.0 0.0 | 0.7]0.1 0.3 0.0 0.4 0.0 0.1
Closed Hi Hat 0.0 0.4 0.0 0.0 0.0 | 0.0 0.0 10.4 | 0.0 | 0.0 0.0 | 0.0 0.0 0.0 0.0
High Floor Tom 0.0 0.0 0.0 0.1 0.3 | 0.0 0.0 0.0 | 0.6 |04 0.2 0.0 0.2 0.0 0.3
Pedal Hi-Hat 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 21.1 | 0.0
Low Tom 0.0 0.0 0.0 0.0 0.4 | 0.0 0.1 0.0 | 07103 0.3 0.0 0.4 0.0 0.4
Open Hi-Hat 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.00.0 0.0 15.6 | 0.0 0.0 0.0
Low-Mid Tom 0.0 0.2 0.0 0.0 0.3 | 0.0 0.0 0.0 | 0.3]0.2 0.0 | 0.0 0.2 0.0 0.2
Hi Mid Tom 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.0 | 0.31]0.0 0.1 0.0 0.1 0.0 0.2
Crash Cymbal 1 0.0 0.0 0.0 0.0 0.6 | 0.0 0.3 0.0 |04 |0.2 0.6 04 | 0.5 0.0 0.0
High Tom 0.0 0.0 0.0 0.2 0.0 | 0.0 0.0 0.0 |0.2]0.2 0.1 0.0 0.0 0.0 0.0
Ride Cymbal 1 0.0 0.0 0.0 0.0 0.0 | 0.0 11.6 | 0.0 | 0.0 | 0.0 0.0 | 0.0 0.0 0.0 0.0
Chinese Cymbal 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.4 |0.2 0.1 0.0 0.0 0.0 0.0
Ride Bell 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 |9.8]0.0 0.0 | 0.0 0.0 0.0 0.0
Tambourine 0.0 0.0 17.7 | 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0
Splash Cymbal 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 |03]0.3 0.1 0.0 0.1 0.0 0.4
Cowbell 0.2 0.2 0.1 2.6 0.2 0.0 0.0 0.0 | 0.2]0.0 0.0 | 0.0 0.0 0.1 0.0
Crash Cymbal 2 0.0 0.0 0.0 0.0 0.3 | 0.0 0.0 00 | 04103 0.2 0.2 0.2 0.0 1.2
Vibraslap 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.1]0.0 0.0 | 0.0 0.0 0.0 0.0
Ride Cymbal 2 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 27.0
Hi Bongo 0.2 0.0 0.0 3.4 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 0.3
Low Bongo 0.0 0.0 0.0 4.2 0.0 | 0.0 0.0 0.0 | 0.00.0 0.0 | 0.0 0.0 0.0 0.2
Mute Hi Conga 0.0 0.0 0.0 11.4 1 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0
Open Hi Conga 0.2 0.0 0.0 12.0 | 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0
Low Conga 0.0 0.0 0.0 11.5 | 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0
High Timbale 0.0 0.0 0.0 0.7 | 0.0 |0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0
Low Timbale 0.0 0.0 0.0 0.3 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0
High Agogo 0.1 0.0 0.0 0.7 | 0.0 | 0.0 0.0 0.0 | 0.00.0 0.0 | 0.0 0.0 0.0 0.0
Low Agogo 0.0 0.0 0.0 0.7 | 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0
Cabasa 0.0 0.0 0.0 0.0 0.0 12.2 | 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0
Maracas 22.3 1 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0]0.0 0.0 | 0.0 0.0 0.0 0.0
Short Whistle 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.00.0 0.0 | 0.0 0.0 0.0 0.0
Long Whistle 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0
Short Guiro 0.2 0.3 0.0 0.7 | 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0
Long Guiro 0.0 0.0 0.0 0.5 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0
Claves 0.2 0.4 0.0 0.8 0.0 | 0.0 0.0 0.0 | 0.00.0 0.0 | 0.0 0.0 0.0 0.0
Hi Wood Block 0.1 0.1 0.0 0.6 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0
Low Wood Block 0.0 0.1 0.0 04 | 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0
Mute Cuica 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0
Open Cuica 0.0 0.0 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 | 0.0 0.0 0.0 0.0
Mute Triangle 0.3 0.3 0.0 0.4 0.0 | 0.0 0.0 0.0 | 0.00.0 0.0 | 0.0 0.0 0.0 0.1
Open Triangle 0.3 0.5 0.1 0.4 0.0 | 0.0 0.0 0.0 | 0.00.0 0.0 | 0.0 0.0 0.0 0.2

Table 4: Nonnegative matrix factorization basis vectors (columns) for percussion lines for the midi file database.

17




number | class percussion codes

1 Bass Drum 35, 36, 41

2 Snare 38, 40

3 Stick and Clap 37, 39

4 Hi Hat, Cymbal, Triangle | 42, 44, 46, 51, 59 , 80, 81
5 Crash Cymbal 49, 52, 55, 57

6 Cowbell 56

7 Vibraslap 58

8 Bongo Conga 60, 61, 62, 62, 63, 64
9 Cabasa 9

10 Tom 41, 43, 45, 47, 48, 50
11 Tambourine 54

12 Agogo 67, 68

13 Ride Bell 53

14 Maracas 70

15 Whistle 71,72

16 Wood Block 76, 77

17 Guiro 73, 74

18 Cuica 78, 79

19 Timbale 65, 66

Table 5: Groups of percussion instruments. The numbers in the last column refer to the percussion code number
in the General Midi Standard.
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Figure 15: Probability of the percussion note onset versus time inside a beat. In this example not all the percussion
onsets were quantized to quarter beat units.

In order to reduce the variability of the data, the various components of the binary percussion vectors were
grouped. To do this, 47 percussion instruments were separated into 19 classes. For example, the Electric Snare is
frequently substituted for Acoustic Snare in a particular midi file. This does not have much impact on the nature
of the percussion accompaniment. Groupings that we used are shown in Table 5.
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Each of the midi files references only a small number of the possible binary percussion vectors. The number of
distinct binary percussion vectors in a midi file varies over a range of zero to little over a hundred as is evident in
Figure 16. Each beat in the midi file, is formed by combining four of the sequential binary vectors. The number of
distinct percussion beats can also be determined and is shown in Figure 17.

As mentioned earlier, the percussion line tends to be composed of repeating percussion sequences of one or
more beats. Assuming all of these sequences are the same length, the periodicity of the the percussion line can
be determined from the autocorrelation function of the binary vector time series. Figure 18 shows a sample
autocorrelation function for one of the midi files. Limiting the search to the maximum offset of 16 beats, the
highest peak suggests a periodicity of four beats. This implies that most of the repeating patterns are four beats
long. An analysis of the entire collection of midi files, indicates that this is the most common length of the repeating
patterns — Figure 19.
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Figure 16: Probability of n distinct binary percussion vectors appearing in a midi file.
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Figure 17: Probability of n distinct percussion beats appearing in a midi file.
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Figure 18: An example of the autocorrelation function of the percussion binary vector time series. The function
implies a periodicity of 4 beats.
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Figure 19: Histogram of percussion pattern periodicity for the collection of midi files.
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Figure 20: Number of distinct discovered tatums versus number of midi files analyzed.

5 Conclusion

The application of these algorithms on real data is not a trivial matter [34]. First there is the question of what is
a true cluster [43]. Then there is the question of which clustering algorithm is appropriate for the type of data.
Clustering algorithms usually require the user to specify the number of clusters that are expected and perhaps
other parameters which effect the processing time and accuracy of the results. There is no guarantee that the
analysis will return meaningful results.

Hennig [44] lists 7 decisions that are required in any cluster analysis. They are 1) choosing the objects to be
clustered, 2) choosing the measurements/variables, 3) standardization of the variables, 4) choosing a similarity
measure, 5) choosing a clustering method, 6) determining or deciding the number of clusters, and 7) interpreting
and validating the results. All of these decisions apply here.
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